as a technique for random sampling

Random sampling via Markov chain

マルコフ連鎖を用いたランダムサンプリング法

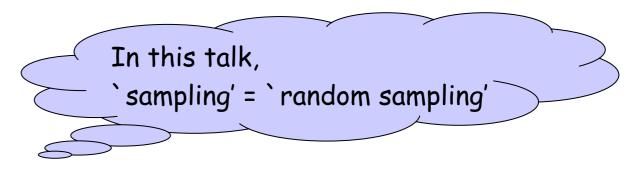
*Shuji Kijima (来嶋 秀治)¹, Tomomi Matsui (松井 知己)²

¹The University of Tokyo

(東京大学 大学院情報理工学系研究科 数理情報学専攻)

²Chuo University

(中央大学 理工学部 情報工学科)



-7. Sampling via Markov chain

key word

Markov chain Monte Carlo (MCMC)

<narrowly defined as>

Monte Carlo method with sampling via Markov chain

<comprehensively intend>
sampling via Markov chain

Markov chain

- Markov chain M (ergodic) defined by
 - \triangleright state space: $\Omega = \{s_1, s_2, s_3\}$ (finite)
 - \succ transition: transition probability matrix P

$$P_{ij} = \operatorname{Pr}(i \rightarrow j) =: P(i, j)$$

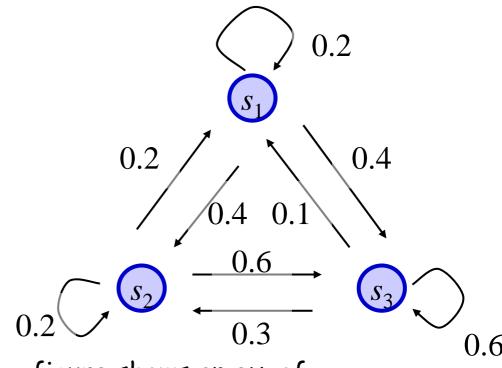


figure shows an ex. of prob. trans. diagram of Markov chain

Markov chain

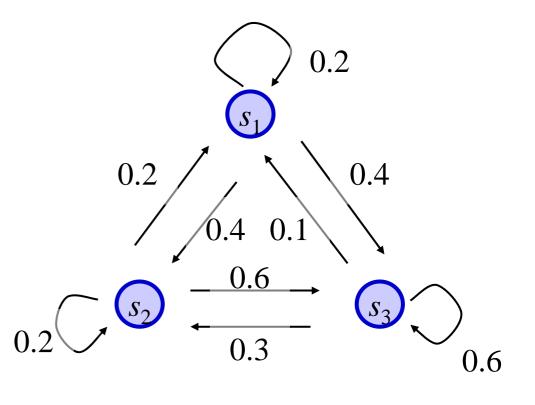
current state

- Markov chain M (ergodic)
 - \triangleright state space: $\Omega = \{s_1, s_2, s_3\}$ (finite)
 - \succ transition: transition probability matrix P

$$P_{ij} = \Pr(i \rightarrow j) =: P(i, j)$$

S_1 S_2 S_3 $S_1 = 0.2 \quad 0.4 \quad 0.4$ $P = 0.2 \quad 0.2 \quad 0.6$

next state



underlying graph

Stationary distribution

- Markov chian M (ergodic)
 - > state space: $\Omega = \{s_1, s_2, s_3\}$ (finite)
 - \succ transition: transition probability matrix P

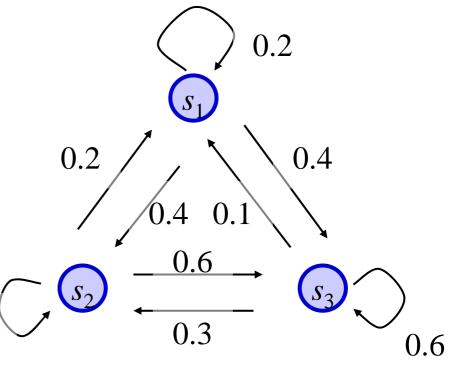
$$P_{ij} = \Pr(i \rightarrow j) =: P(i, j)$$

 \triangleright stationary distribution: π

$$\Leftrightarrow \pi P = \pi, |\pi| = 1, \pi \ge 0$$

$$P = \left(\begin{array}{cccc} 0.2 & 0.4 & 0.4 \\ 0.2 & 0.2 & 0.6 \\ 0.1 & 0.3 & 0.6 \end{array}\right)$$

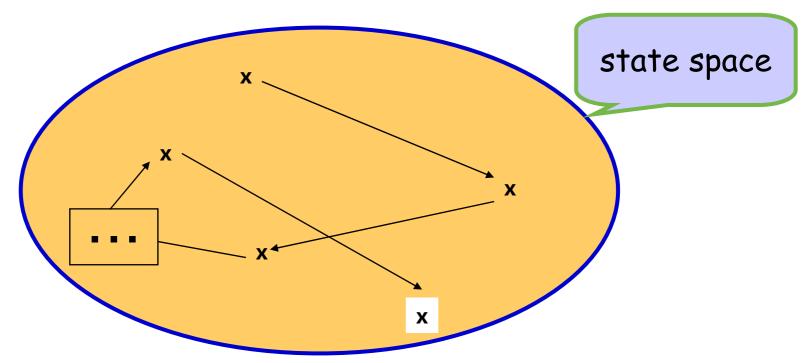
$$\pi = (1/7, 2/7, 4/7)$$



underlying graph

Basic idea of "sampling via Markov chain"

- 1. Design a Markov chain whose stat. dist = aiming dist.
- 2. Generate a sample from stat. dist. after many tran.s.



outputs after many transitions according to asymptotically stationary distribution

Applications of MCMC

- counting-hard huge state space

MCMC works powerfully for sampling-hard objects

- > Easy to design a sampler for an objective distribution cf) simulated annealing
- > Many applications
 - Contingency table
 - Ising model
 - Permanent
 - Spanning tree
 - · Numerical integration (Monte Carlo integration)
 - ptimization

Pr[global opt.] = 1 Pr[other sol.s] = 0

Ex. 1. Contingency table

as an ex. of sampling via Markov chain

- ✓ matrix of non-negative integers
- ✓ satisfies (given) marginal sums

						12
						18
5	4	3	7	5	6	30

Problem

Given: marginal sums

Output: a contingency table u.a.r.

Ex. 1. Contingency table

- ✓ matrix of non-negative integers
- ✓ satisfies (given) marginal sums

						12
						18
5	4	3	7	5	6	30

5	4	3	0	0	0	12
0	0	0	7	5	6	18
5	4	3	7	5	6	30

table A

4	3	1	3	1	0	12
1	1	2	4	4	6	18
5	4	3	7	5	6	30

table B

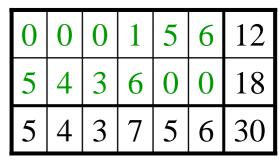


table C

Problem

Given: marginal sums

Output: a contingency table u.a.r.

Ex. 1. Contingency table

- ✓ matrix of non-negative integers
- √ satisfies (given) marginal sums

						12
						18
5	4	3	7	5	6	30

counting # of tables satisfying given marginal sums

 \Rightarrow #P-complete (NP-hard), even when size of table is $2 \times n$ [Dyer, Kannan, and Mount '97]

Problem

Given: marginal sums

Output: a contingency table u.a.r.

Previous works of contingency tables

1985, Diaconis and Effron, exact test with uniform sampler,

1995, Diaconis and Saloff-Coste, approx. sampler for $m^* \times n^*$ table,

1997, Dyer, Kannan and Mount, #P-completeness,

2000, Dyer and Greenhill, approx. sampler for $2 \times n$ table,

2002, Cryan et al., approx. sampler for $m^* \times n$ table

2003, Kijima and Matsui, perfect sampler for $2 \times n$ table

Open problem

Is there a poly-time (approx. or perfect) sampler for $m \times n$ table?

Basic idea of "sampling via Markov chain"

- Design a Markov chain whose stat. dist = aiming dist.
- 2. Generate a sample from stat. dist. after many tran.s.

-6: Design of Stationary Distribution

Design of Markov chain with aiming stat. dist.

A Markov chain M is ergodic_iff

- 1. the state space is finite,
- limit dist. = stat. dist.
- 2. trans. matrix is irreducible, and
- 3. apperiodic.

every pair is mutually reachable

<u>Them</u>

For a positive function f and transition prob. matrix P, if detailed balance equations

$$f(x) \cdot P(x, y) = f(y) \cdot P(y, x) \qquad \forall x, y \in \Omega$$

hold, then the stationary distribution

$$\pi(x) = c \cdot f(x)$$
 c is the normalizing constant

Metropolis-Hastings, Gibbs sampler, heat-bath chain, etc.

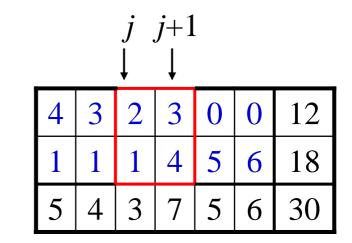
Ex. 1. Markov chain for contingency tables [KM '06]

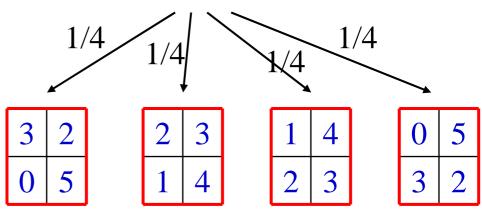
transition rule is defined as follows

- 1. choose a consecutive pair of columns (j, j+1) u.a.r. (prob. 1/(n-1))
- 2. change the values of cells in (j, j+1)-th columns u.a.r. on possible states

2	3	5		+k	<u>-k</u>
1	4	5	+	<u>-k</u>	+k
3	7	10			

=> preserve marginal sums





4 possible states (requirement on non-negativity)

Our Markov chain for contingency tables [KM '06]

Them

Our Markov chain is ergodic, and the unique stat. dist. of the chain is uniform dist.

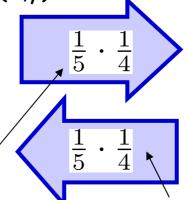
proof for the latter claim: detailed balance equations

$$1 \cdot P(x, y) = 1 \cdot P(y, x) \qquad \forall x, y \in \Omega$$

hold.

with the following ex. of a pair (x,y)

4	3	2	3	0	0	12
1	1	1	4	5	6	18
5	4	3	7	5	6	30



4	3	0	5	0	0	12
1	1	3	2	5	6	18
5	4	3	7	5	6	30

transition prob. from X to Y

transition prob. from Y to X

since ...

Our Markov chain for contingency tables [KM '06]

Them

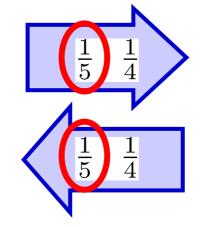
Our Markov chain is ergodic, and the unique stat. dist. of the chain is uniform dist.

proof for the latter claim: detailed balance equations

$$1 \cdot P(x, y) = 1 \cdot P(y, x) \qquad \forall x, y \in \Omega$$

$$\forall x, y \in \Omega$$
 hold.

X	4	3	2	3	0	0	12
	1	1	1	4	5	6	18
	5	4	3	7	5	6	30



4	3	0	5	0	0	12
1	1	3	2	5	6	18
5	4	3	7	5	6	30

choose a consecutive pair of indices u.a.r. (w.p. 1/(6-1))

Our Markov chain for contingency tables [KM '06]

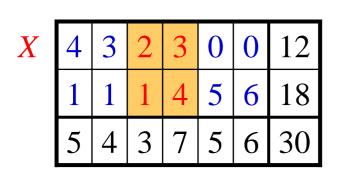
Them

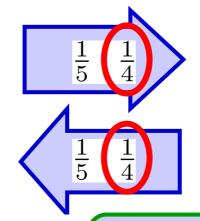
Our Markov chain is ergodic, and the unique stat. dist. of the chain is uniform dist.

proof for the latter claim: detailed balance equations

$$1 \cdot P(x, y) = 1 \cdot P(y, x) \qquad \forall x, y \in \Omega$$

$$\forall x, y \in \Omega$$
 hold.





4	3	0	5	0	0	12
1	1	3	2	5	6	18
5	4	3	7	5	6	30

on the condition (3,4) columns are chosen, there are common 4 possible states, since values in other columns are same.

3	2	2	3	1	4	0	5
0	5	1	4	2	3	3	2

Basic idea of sampling via Markov chain

Start from arbitrary initial state

Make several transitions
Output a sample

X

The output is 'approximately' according to the stat. dist.

Basic idea of "sampling via Markov chain"

- Design a Markov chain whose stat. dist = aiming dist.
- 2. Generate a sample from stat. dist. after many tran.s.

-5: Convergence Speed of Markov chain

frontier of MCMC

"How many transitions do we need?"

make the error sufficiently small

- > If we have an approximate sampler,
 - · we have to estimate the mixing time, and
 - bound the total variation distance.
- > If we have a perfect sampler,
 - · we can output a sample

No error

exactly according to the stationary distribution.

We need not to decide the error rate.

· CFTP (Coupling From The Past) realizes a perfect sampler

Mixing time of a Markov chain is defined as follows

 μ , ν : dist. on Ω

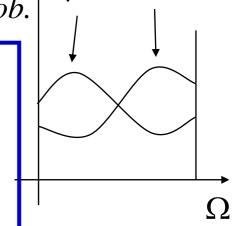
Error

prob.

Total variation distance

$$d_{\text{TV}}(\mu, \nu) \stackrel{\text{def.}}{=} \max_{Q \subseteq \Omega} \left\{ \sum_{x \in Q} \left(\mu(x) - \nu(x) \right) \right\}$$

$$\equiv \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|$$



Ergodic chain M (stat. space Ω , trans. matrix P, stat. dist. π)

Mixing time

t.v.d. is proved sufficiently small in mixing time

$$\tau(\varepsilon) \stackrel{\text{def.}}{=} \max_{x \in \Omega} \left\{ \min\{t \mid \forall s \ge t, \ d_{\text{TV}}(P_x^t, \pi) \le \varepsilon \} \right\}$$

 \triangleright rapidly mixing if $\tau(\epsilon) \leq \text{poly.}(\log \Omega, \epsilon^{-1})$

"How many transitions do we need?"

make the error sufficiently small

- > If we have an approximate sampler,
 - · we have to estimate the mixing time, and
 - bound the total variation distance.
- > If we have a perfect sampler,
 - · we can output a sample

NO ERROR

exactly according to the stationary distribution.

We need not to decide the error rate.

CFTP (<u>Coupling From The Past</u>) realizes a perfect sampler

review of

INTERMEZZO

-3. PERFECT SIMULATION

Propp and Wilson [1996]

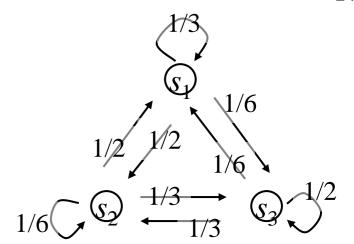
The coupling from the past (CFTP)

- is an ingenious simulation of Markov chain,
- which realize perfect sampling.

sampling from EXACTLY limit distribution

Update function -- with an example

- An ergodic Markov chain *MC*
 - \triangleright finite state space: s_1, s_2, s_3 ;
 - > Transition



<u>Update function -- with an example</u>

• An ergodic Markov chain *MC*

We consider to determine the next state with

- a random number $\lambda \in \{1,...,6\}$ (u.a.r.), and

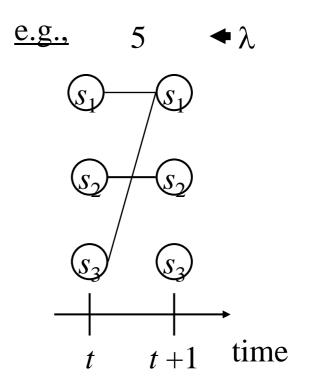
aureant atata

- an Update function.

1/3
1/6
1/2 1/2
$1/6 \bigcirc \bigcirc$

	current state			
		s_1	s_2	s_3
λ	1	s_3	s_1	s_2
	2	s_2	s_3	s_2
	3	s_2	s_1	s_3
	4	s_1	s_1	s_3
	5	s_1	s_2	s_1
	6	s_2	s_3	s_3

This table shows an update function



This is an illustration of a transition.

CFTP Algorithm and Theorem.

Markov chain MC: \langle

 Ω : finite state space

 $\Phi_s^t(x, \lambda)$: transition rule

ergodic

CFTP Algorithm

- 1. Set T = -1; set λ : empty;
- 2. Generate $\lambda[T]$: random number;

Put $\lambda := (\lambda[T], \lambda[T+1], \dots, \lambda[-1]);$

consists of

- · 3 steps and
- · a stopping condition
- 3. Start a chain from every element in Ω at period T, run MC with λ to period 0.
 - a. if coalesce $(\exists y \in \Omega, \forall x \in \Omega, y = \Phi_T^0(x, \lambda)) \Rightarrow$ return y;
 - b. otherwise, set T := T-1; go to step 2.;

CFTP Theorem

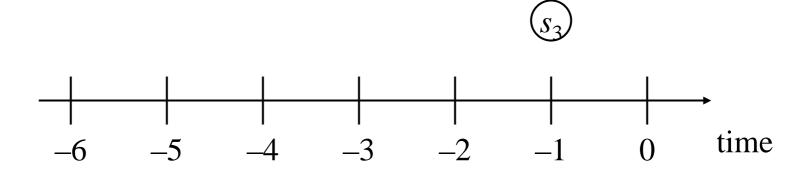
When CFTP Algorithm terminates, the returned value realizes the random variable from stationary distribution, exactly.

In the following slides, I will illustrate the algorithm precisely.

Step 1 is an initializing step

1. set T = -1; set λ : empty sequence;

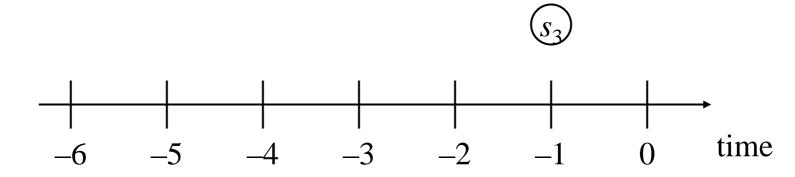
← λ



2. Generate $\lambda[T]$: random number;

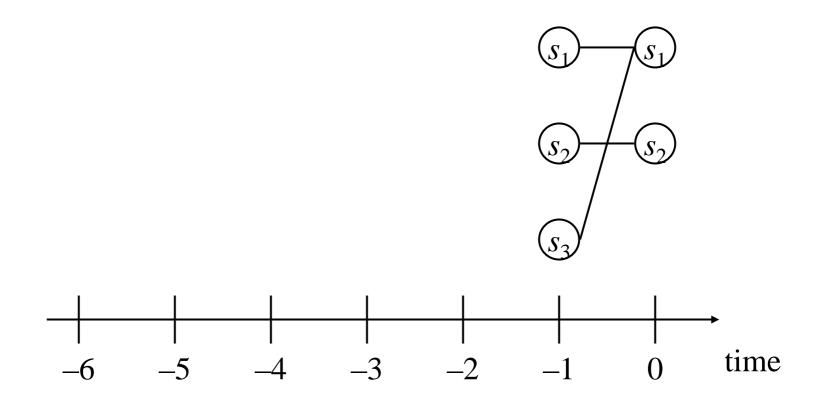
Put
$$\lambda := (\lambda[T], \lambda[T+1], \dots, \lambda[-1]);$$

$$\lambda(-1) = 5 \leftarrow \lambda$$



3. Start a chain from every element in Ω at period T, run MC with λ to period 0.

5 **←** λ



coalesce means a state at 0 is unique.

3. Start a chain from every element in Ω at period T, run MC with λ to period 0.

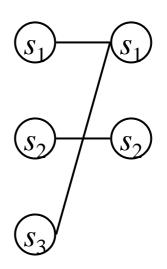
5 **←** λ

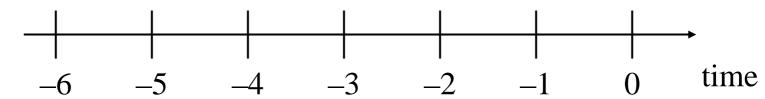
a. if coalesce

$$(\exists y \in \Omega, \ \forall x \in \Omega, \ y = \Phi_T^0(x, \lambda))$$

 \Rightarrow return y ;

b. otherwise, set T := T - 1; go to step 2.;





In this case, the states do not coalesce, thus...

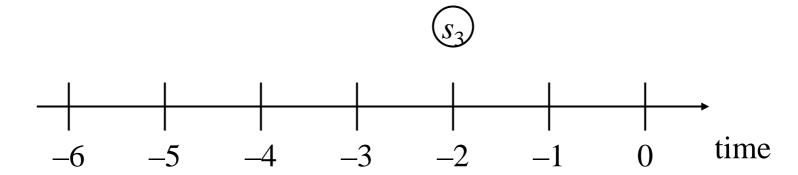
3. Start a chain from every element in Ω at period T, run MC with λ to period 0.

 $5 \leftarrow \lambda$

a. if coalesce

$$(\exists y \in \Omega, \ \forall x \in \Omega, \ y = \Phi_T^0(x, \lambda))$$

- \Rightarrow return y;
- b. otherwise, set T := T 1; go to step 2.;

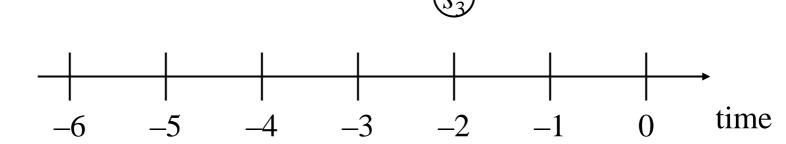


2. Generate $\lambda[T]$: random number;

Put
$$\lambda := (\lambda[T], \lambda[T+1], \dots, \lambda[-1]);$$

We will use "5" from -1 to 0 again, generated in the previous iteration.

$$\lambda(-2) = 2$$
 5

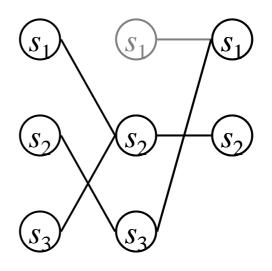


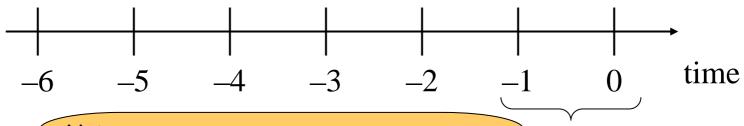
if coalesce

a.

- 3. Start a chain from every element in Ω at period T, run MC with λ to period 0.
 - - $(\exists y \in \Omega, \ \forall x \in \Omega, \ y = \Phi_T^0(x, \lambda))$ \Rightarrow return y;
 - otherwise, set T := T 1; b. go to step 2.;

We will use "5" from -1 to 0 again, generated in the previous iteration.





Note

transitions from -1 to 0 = transitions in the previous iteration

a. if coalesce

$$(\exists y \in \Omega, \ \forall x \in \Omega, \ y = \Phi_T^0(x, \lambda))$$

3

7

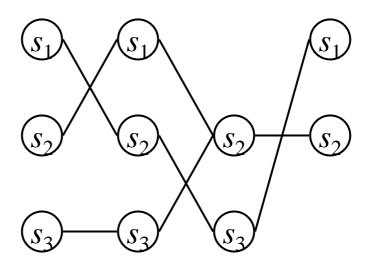
5

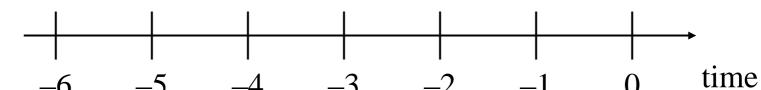
← λ

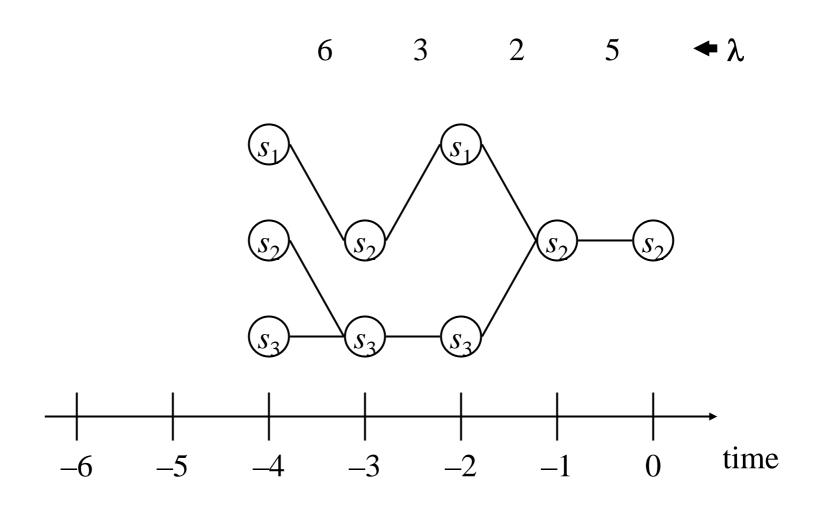
 \Rightarrow return y;

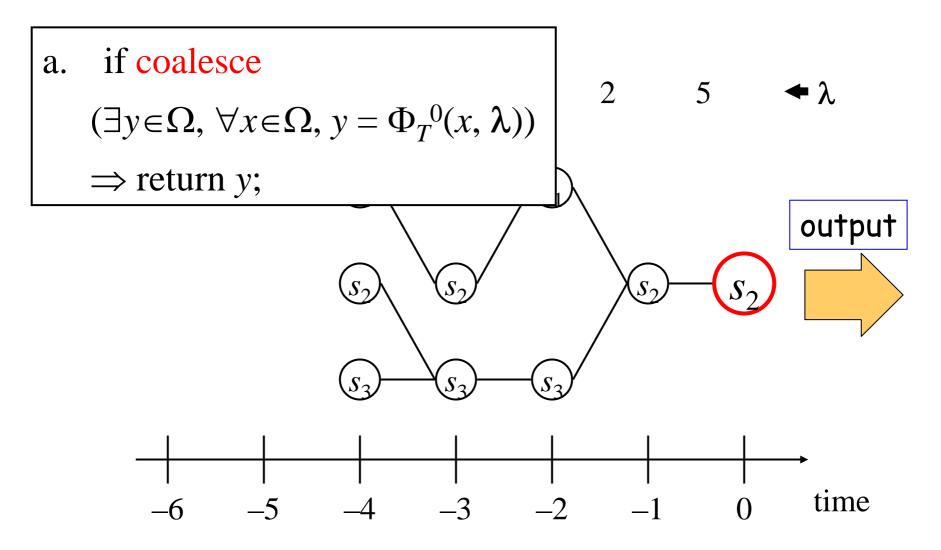
b. otherwise, set T := T - 1;

go to step 2.;









CFTP Algorithm and Theorem.

Markov chain MC: $\begin{cases} \Phi_s^t(x, \lambda): \text{ transition rule} \\ \text{ergodic} \end{cases}$

 Ω : finite state space

CFTP Algorithm

- Set T = -1; set λ : empty;
- Generate $\lambda[T]$,..., $\lambda[T/2-1]$: random number;

Put $\lambda := (\lambda[T], ..., \lambda[T/2 - 1], \lambda[T/2], ..., \lambda[-1]);$

- 3. Start a chain from every element in Ω at period T, run MC with λ to period 0.
 - if coalesce $(\exists y \in \Omega, \forall x \in \Omega, y = \Phi_T^0(x, \lambda)) \Rightarrow$ return y; a.
 - otherwise, set T := T-1; go to step 2.; b.

CFTP Theorem

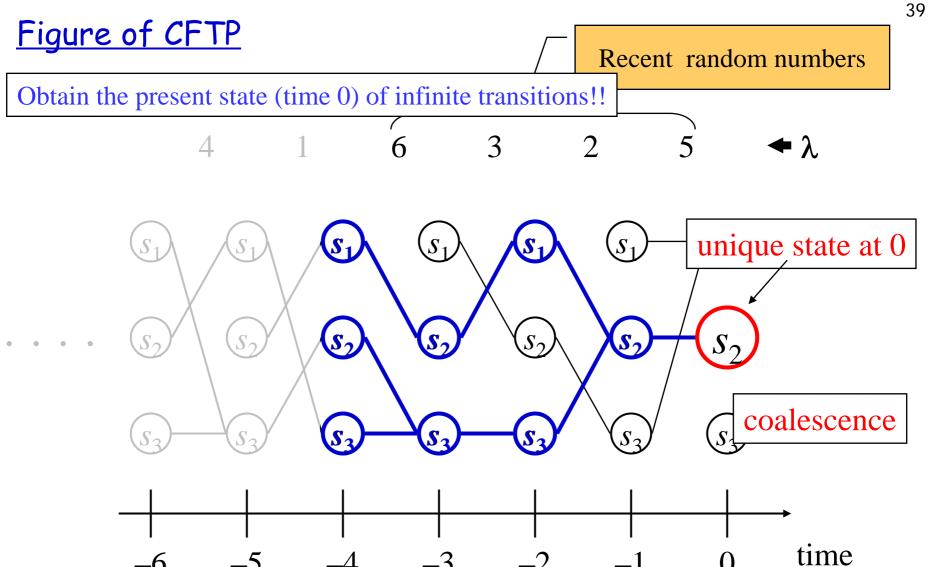
When CFTP Algorithm terminates, the returned value realizes the random variable from stationary distribution, exactly.

what is the idea of CFTP?

Idea of CFTP (Coupling From the Past)

- ◆ Suppose an ergodic chain from infinite past, imaginarily.
 - Present state (state at time 0) is EXACTLY according to the stat. dist.
- ♦ What is the present state?
 - > Guess from the recent random transitions.
 - ⇒ Find the <u>evidence</u> of the present state.

obtained by considering random numbers and transitions with an update function.



Then we can start chains at time -4 from all states with recent random numbers.

Fortunately, we obtain a unique state at time 0. we call this situation 'coalescence'

CFTP Algorithm and Theorem.

Markov chain *MC*:

 Ω : finite state space

 $\Phi_s^t(x, \lambda)$: transition rule

ergodic

However it is hard to start ...

CFTP Algorithm

since we concern with huge state space

- 1. Set T = -1; set λ : empty;
- 2. Generate $\lambda[T]$,..., $\lambda[T/2-1]$: random number;

Put
$$\lambda := (\lambda[T],..., \lambda[T/2 - 1], \lambda[T/2],...,\lambda[-1]);$$

- 3. Start a chain from every element in Ω at period T, run MC with λ to period 0.
 - a. if coalesce $(\exists y \in \Omega, \forall x \in \Omega, y = \Phi_T^0(x, \lambda)) \Rightarrow$ return y;
 - b. otherwise, set T := T-1; go to step 2.;

CFTP Theorem

When CFTP Algorithm terminates, the returned value realizes the random variable from stationary distribution, exactly.

We cannot apply this algorithm, directly

-2: Perfect Sampler for two-rowed contingency tables

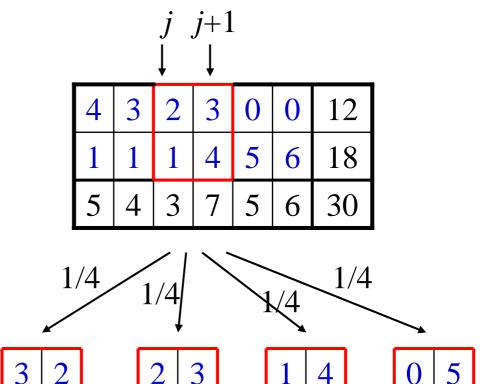
[KM '06]

Rem. Markov chain for contingency tables [KM '06]

- 1. choose a consecutive pair of columns (j, j+1) u.a.r. (prob. 1/(n-1))
- 2. change the values of cells in (j, j+1)-th columns u.a.r. on possible states

2	3	5		+k	<u>-k</u>
1	4	5	+	<u>-k</u>	+k
3	7	10			

=> preserve marginal sums



4 possible states (requirement on non-negativity)

3

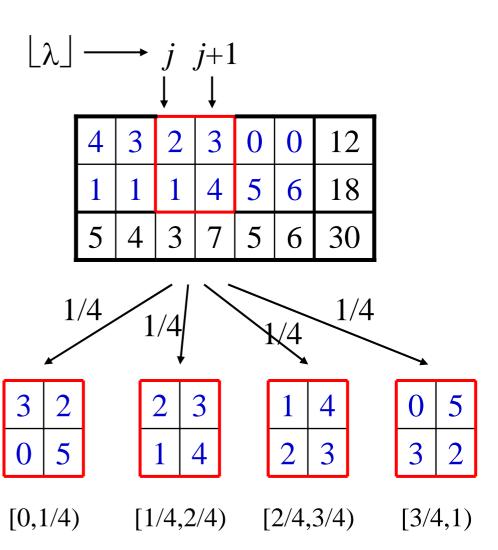
Update function [KM '06]

- generate random real $\lambda \in [1, n)$
- set $j = \lfloor \lambda \rfloor$
- · set

$$X(1,j) = \max\{X'[1,j]\} - \lfloor \theta \lambda' \rfloor$$

 $\triangleright \theta$: #of possible states

$$> \lambda' := \lambda - \lfloor \lambda \rfloor$$



 $\lambda' := \lambda - |\lambda|$

Sampling algorithm (monotone CFTP)

- 1. Set T = -1; Set λ : empty sequence:
- 2. Generate $\lambda[T]$,..., We simulate just 2 chains random number;

put
$$\lambda := (\lambda[T], ..., \lambda[T/2], ..., \lambda[-1]);$$

- 3. Start chains from x_U , x_L at period T and simulate with λ until period 0;
 - a. if coalesce on $Y \Rightarrow$ return Y;
 - b. otherwise, set T := 2T; go to 2;

						_
0	0	0	1	5	6	12
5	4	3	6	0	0	18
5	4	3	7	5	6	30

 X_{II} : N-W rule

 $X_{\rm L}$: N-E rule

<u>Them.</u>

The algorithm returns a random vector EXACTLY according to a product form solution.

Key points of the theorem is ...

Claim

Coalescence from $x_{\rm U}$ and $x_{\rm L} \Leftrightarrow$ Coalescence from all states

- Introduce a partial order on the state space.
- $X_{\rm U}$ and $X_{\rm L}$ are the max. and the min., respectively.
- · Any transition keeps the partial order.

Our Markov chain is a monotone Markov chain

[Propp and Wilson 1996]

Def. cumulative sum vector

Consider to represent $c_X(i)$ a $2 \times n$ table X by a line, which is a piece-wise linear function of cumulative sum vector c_X defined by

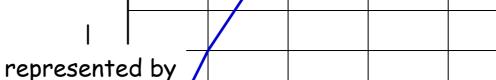
 $c_X(i)$

$$\stackrel{\text{def.}}{=} \begin{cases} 0 & (i=0) \\ \sum_{j=1}^{i} X[1,j] & (i \in \{1,\dots,n\}) \end{cases} 6$$

<u>e.g.,</u>

4	3	1	3	1	0	12
1	1	2	4	4	6	18
5	4	3	7	5	6	30

ightharpoonup bijection: $X \to c_X$



piece-wise linear function

transition (represented by a line)

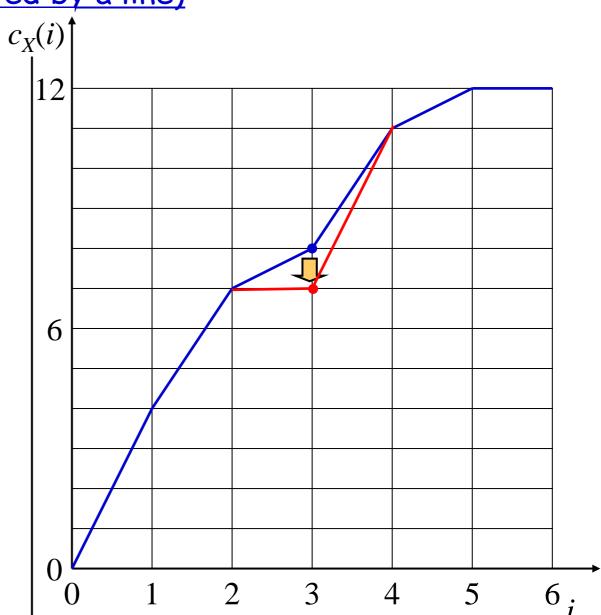
e.g., $\lambda = 3.1$

4	3	1	3	1	0	12
1	1	2	4	4	6	18
5	4	3	7	5	6	30

4	3	0	4	1	0	12
1	1	3	3	4	6	18
5	4	3	7	5	6	30

in the line representation

Choose an index, and change the point only at the index.



Def. Partial order

$$X \ge Y$$

$$\Leftrightarrow c_X(i) \ge c_Y(i)$$

$$(\forall i \in \{0, ..., n\})$$

X

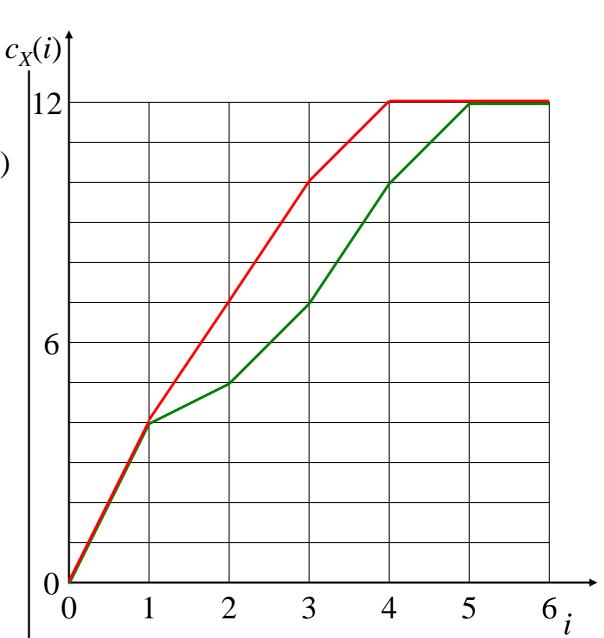
4	3	3	2	0	0	12
1	1	0	5	5	6	18
5	4	3	7	5	6	30

Y

4	1	2	3	2	0	12
1	3	1	4	3	6	18
5	4	3	7	5	6	30

$X \geq Y$

It means that red line is upper than green.



Max, Min on poset

5	4	3	0	0	0	12
0	0	0	7	5	6	18
5	4	3	7	5	6	30

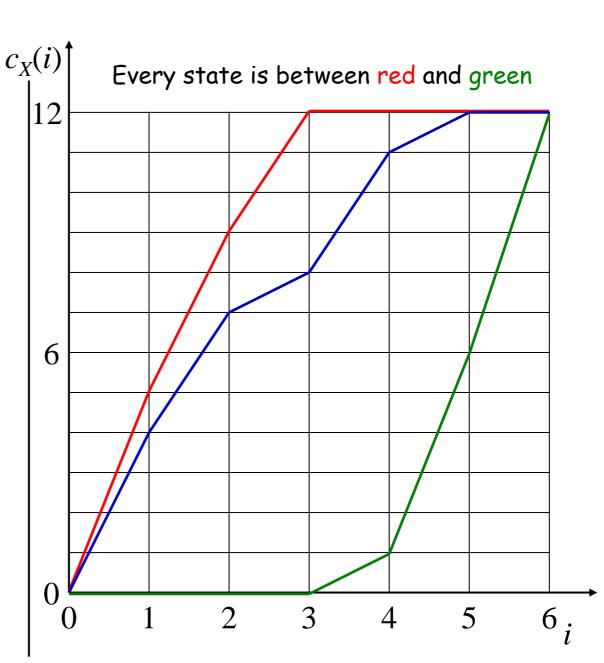
 $X_{\rm U}$: N-W rule

0	0	0	1	5	6	12
5	4	3	6	0	0	18
5	4	3	7	5	6	30

 $X_{\rm L}$: N-E rule

Lemma

 $X_{\rm U} \geq \forall X \geq X_{\rm L}$



Key lemma

 \boldsymbol{X}

4	3	3	0	2	0	12
1	1	0	7	3	6	18
5	4	3	7	5	6	30

Y

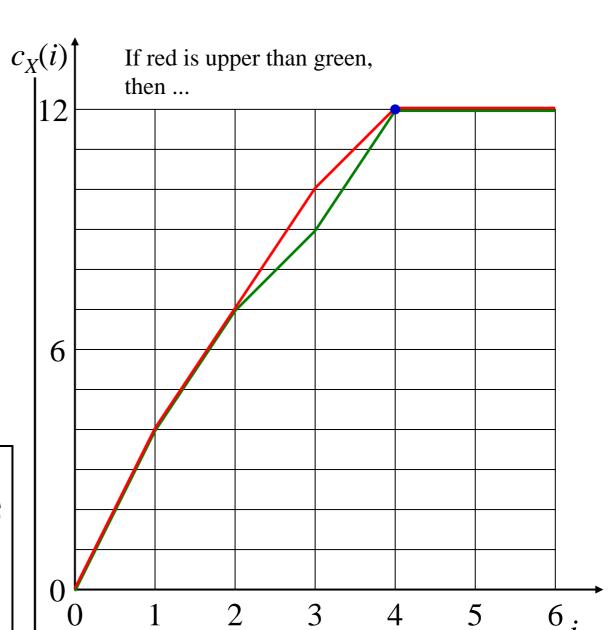
4	3	2	2	1	0	12
1	1	1	5	4	6	18
5	4	3	7	5	6	30

<u>Lemma</u>

Any transition keeps partial order i.e.,

$$\forall (X, Y) \text{ s.t. } X \geq Y,$$

 $\phi(X, \lambda) \geq \phi(Y, \lambda)$



Key lemma

 \boldsymbol{X}

4	3	3	0	2	0	12
1	1	0	7	3	6	18
5	4	3	7	5	6	30

Y

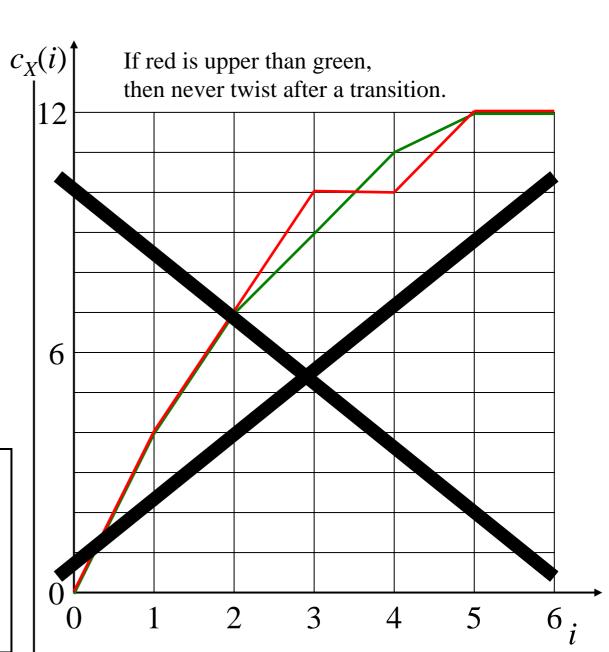
4	3	2	2	1	0	12
1	1	1	5	4	6	18
5	4	3	7	5	6	30

<u>Lemma</u>

Any transition keeps partial order i.e.,

$$\forall (X, Y) \text{ s.t. } X \geq Y,$$

 $\phi(X, \lambda) \geq \phi(Y, \lambda)$



Key points of the theorem is ...

Claim

Coalescence from x_{II} and $x_{II} \Leftrightarrow$ Coalescence from all states

- Introduce a partial order on the state space.
- $X_{\rm U}$ and $X_{\rm L}$ are the max. and the min., respectively.
- · Any transition keeps the partial order.

Our Markov chain is a monotone Markov chain

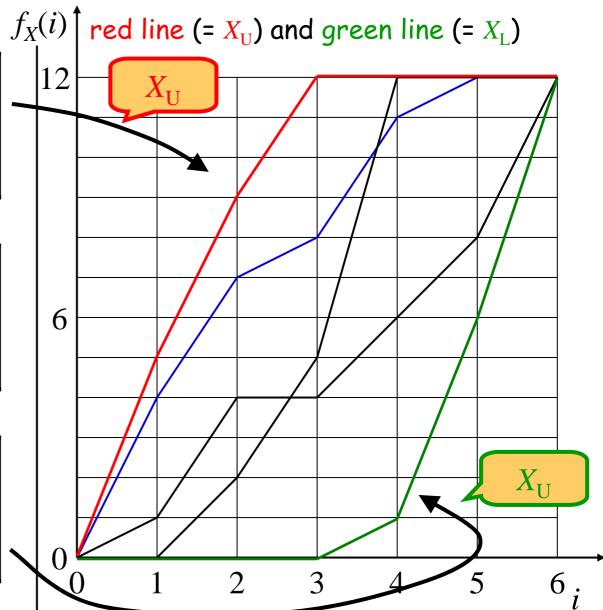
[Propp and Wilson 1996]

5 4 3 0 0 0 12 0 0 0 7 5 6 18 5 4 3 7 5 6 30

4	3	1	3	1	0	12
1	1	2	4	4	6	18
5	4	3	7	5	6	30

0	0	0	1	5	6	12
5	4	3	6	0	0	18
5	4	3	7	5	6	30

every state is between

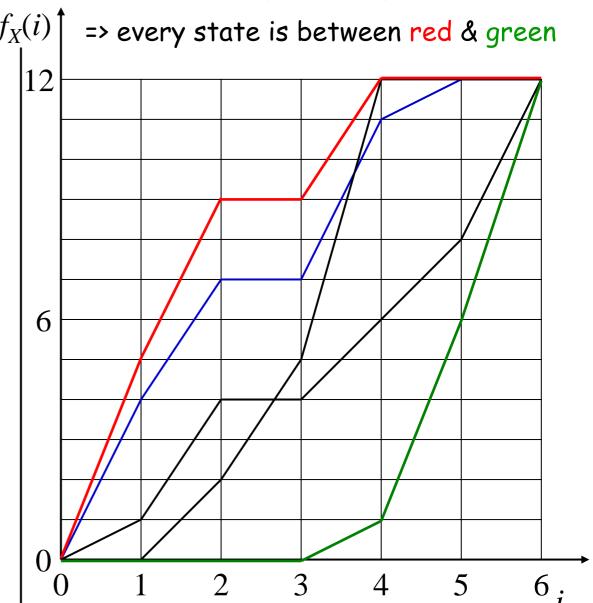


5	4	0	3	0	0	12
0	0	3	4	5	6	18
5	4	3	7	5	6	30

4	3	0	4	1	0	12
1	1	3	3	4	6	18
5	4	3	7	5	6	30

0	0	0	1	5	6	12
5	4	3	6	0	0	18
5	4	3	7	5	6	30

any transition preserve part. order

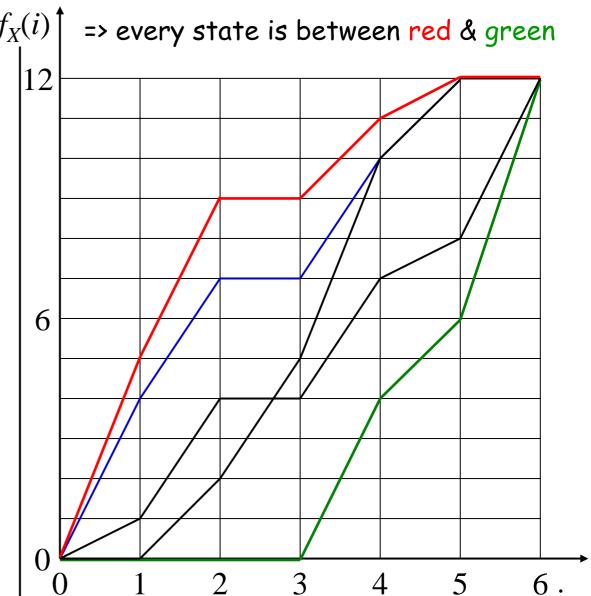


5	4	0	2	1	0	12
0	0	3	5	4	6	18
5	4	3	7	5	6	30

4	3	0	3	2	0	12
1	1	3	4	3	6	18
5	4	3	7	5	6	30

0	0	0	4	2	6	12
5	4	3	3	3	0	18
5	4	3	7	5	6	30

any transition preserve part. order

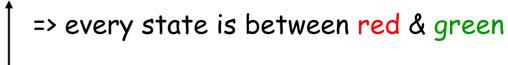


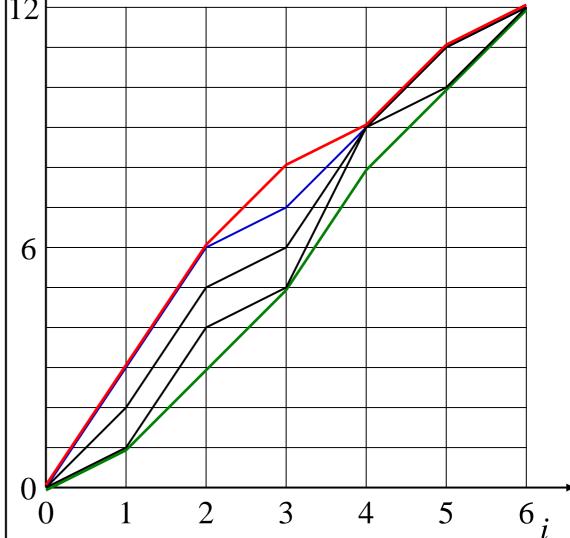
3	3	2	1	2	1	12
2	1	1	6	3	5	18
5	4	3	7	5	6	30

3	3	1	2	2	1	12
2	1	2	5	3	5	18
5	4	3	7	5	6	30

1	2	2	3	2	2	12
4	2	1	4	3	4	18
5	4	3	7	5	6	30

any transition preserve part. order

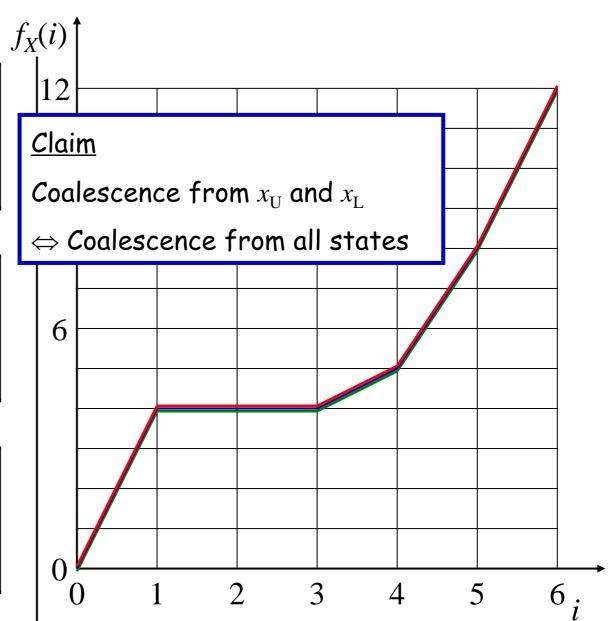




4	0	0	1	3	4	12
1	4	3	6	2	2	18
5	4	3	7	5	6	30

4	0	0	1	3	4	12
1	4	3	6	2	2	18
5	4	3	7	5	6	30

4	0	0	1	3	4	12
1	4	3	6	2	2	18
5	4	3	7	5	6	30



-1: Concluding Remark

Expected running time of our perfect sampler

Condition

column sum vector s satisfies

$$s_1 \ge s_2 \ge \cdots \ge s_n$$

Claim

Expected coalescence time = O($n^3 \ln (n \cdot K)$).

n: # of rows

K: sum total in table

- ➤ Omit the proof
- Expected running time of CFTP algorithm = Single server model $(T_*: coalescence time)$
- Coalescence time of monotone CFTP (Propp and Wilson '96)

$$ightharpoonup \mathrm{E}\left[T_*\right] \le 2 \ \tau \ (1 + \ln D)$$
 (τ : mixing rate, D : the distance of max. and min.)

• Mixing rate of our chain

$$\succ$$
 τ = n^2 (n − 1) ln (n · K), $D \le (n$ · K) (by path coupling) \Leftrightarrow special distance

Discussion

monotone Markov chain

- ✓ Ising model
 - restoration of mono-chromatic pictures
 - Potts model Hard-core model
- √ tiling
- √ 2-rowed contingency tables
- ✓ queueing network

Another perfect sampling algorithm

✓ Rooted spanning tree

Improvement of memory space

Read once algorithm [Wilson 2000]

Reference

- O. Haeggstroem,
 "Finite Markov Chains and Algorithmic Application,"
 London Mathematical Society, Student Texts, 52,
 Cambridge University Press, 2002.
- ・来嶋秀治, 松井知己, "完璧にサンプリングしよう!" オペレーションズ・リサーチ, 50 (2005), 第一話「遥かなる過去から」, 169--174 (no. 3), 第二話「天と地の狭間で」, 264--269 (no. 4), 第三話「終りある未来」, 329--334 (no. 5).

http://www.simplex.t.u-tokyo.ac.jp/~kijima/ (来嶋のHPの"資料"からダウンロード可能)

Future works

- To apply the monotone CFTP to sampling-hard objects
 - ⇒ Design a Markov chain
 - ⇒ Design a perfect sampler
 - ⇒ Estimate the coalescence time
- $m \times n$ contingency tables
- New algorithm for Perfect Sampling

0. The end

— all of your views coalesce.

Thank you for the attention.